Instructors' Perceptions of Networked Learning and Analytics | Perceptions des instructeurs quant à l'apprentissage et l'analyse en réseau

Scott Comber, Martine Durier-Copp, Anatolity Gruzd


This study seeks to understand instructors’ perceptions of social network analysis (SNA) and network visualizations as learning analytics (LA) tools for generating useful insights about student online interactions in their class. Qualitative and quantitative data were collected from three graduate courses taught at a Canadian university at the end of the academic term and came from two sources: (1) class-wide forum discussion messages, and (2) interviews with instructors regarding their perceptions of student networks and interactions. This study is unique as it focuses on instructors’ self-assessments of online student interactions and compares this with the SNA visualization. The difference between instructors’ perceptions of social network interactions and actual interactions underlines the potential that LA can provide for instructors. The results confirmed that SNA and network visualizations have the potential of making the “invisible” visible to instructors, thus enhancing their ability to engage students more effectively.

Cette étude vise à comprendre les perceptions des instructeurs sur l’analyse des réseaux sociaux (ARS) et la visualisation de réseaux comme outils d’analyse de l’apprentissage (AA) produisant des perspectives utiles sur les interactions en ligne des étudiants de leur classe. Des données qualitatives et quantitatives ont été collectées dans trois cours des cycles supérieurs d’une université canadienne à la fin de la session scolaire. Ces données proviennent de deux sources : (1) les messages du forum de discussion de l’ensemble du groupe et (2) des entretiens avec les instructeurs au sujet de leurs perceptions sur les réseaux et interactions des étudiants. Cette étude est unique en ce qu’elle se concentre sur les auto-évaluations des instructeurs portant sur les interactions étudiantes en ligne, et les compare à la visualisation de l’ARS. La différence entre les perceptions qu’ont les instructeurs des interactions sur les réseaux sociaux et les interactions réelles souligne le potentiel que l’AA peut offrir aux instructeurs. Les résultats ont confirmé que l’ARS et les visualisations de réseaux ont le potentiel de rendre « l’invisible » visible pour les instructeurs, améliorant ainsi leur capacité à motiver les étudiants plus efficacement.


Learning analytics; e-learning; collaborative learning; social network analysis; network visualization; online networks

Full Text:



Absar, R., Gruzd, A., Haythornthwaite, C., & Paulin, D. (2015). Media multiplexity in connectivist MOOCs. In Proceedings of the fifth international conference on learning analytics and knowledge (pp. 424-425). New York, NY: ACM. doi:10.1145/2723576272 3654

Ali, L., Hatala, M., Gašević, D., & Jovanović, J. (2012). A qualitative evaluation of evolution of a learning analytics tool. Computers & Education, 58(1), 470-489. doi:10.1016/j. compedu.2011.08.030

Arnold, K. E., & Pistilli, M. D. (2012). Course signals at Purdue: Using learning analytics to increase student success. In Proceedings of the second international conference on learning analytics and knowledge (pp. 267-270). New York, NY: ACM. doi:10.1145/233 0601.2330666

Aviv, R., Erlich, Z., Ravid, G., & Geva, A. (2003). Network analysis of knowledge construction in asynchronous learning networks. Journal of Asynchronous Learning Networks, 7(3), 1-23. Retrieved from

Bakharia, A., & Dawson, S. (2011). SNAPP: A bird’s-eye view of temporal participant interaction. In Proceedings of the first international conference on learning analytics and knowledge (pp. 168-173). New York, NY: ACM. doi:10.1145/2090116.2090144

Brooks, C., Thompson, C., & Teasley, S. (2015). A time series interaction analysis method for building predictive models of learners using log data. In Proceedings of the fifth international conference on learning analytics and knowledge (pp. 126–135). New York, NY: ACM. doi:10.1145/2723576.2723581

Chios, S. (2018, April 3). The big data revolution: Will it help university students graduate? The Globe and Mail. Retrieved from 31939870/

Cho, H., Gay, G., Davidson, B., & Ingraffea, A. (2007). Social networks, communication styles, and learning performance in a CSCL community. Computers & Education, 49(2), 309-329. doi:10.1016/j.compedu.2005.07.003

Clow, D. (2013). An overview of learning analytics. Teaching in Higher Education, 18(6), 683-695. doi:10.1080/13562517.2013.827653

Collins, R., & Gruzd, A. (2017). Learning within digital media: Investigating the relationships between student citation networks, assignment structures, and learning outcomes. In Proceedings of the 50th Hawaii International Conference on System Sciences. Maui, HI. Retrieved from 0258.pdf

Corrin, L., & de Barba, P. (2015). How do students interpret feedback delivered via dashboards? In Proceedings of the fifth international conference on learning analytics and knowledge (pp. 430–431). New York, NY: ACM. doi:10.1145/2723576.2723662

Couros, A. (2009). Open, connected, social – implications for educational design. Campus-Wide Information Systems, 26(3), 232-239. doi: 10.1108/10650740910967393

Czerkawski, B. C. (2015). When learning analytics meets e-learning. Online Journal of Distance Learning Administration, 18(2). Retrieved from a2e1a71501bfe8183654a8d6121a1ff9265e.pdf

Dascalu, M., Stavarche, L. L., Trausan-Matu, S., Dessus, P., Bianco, M., & McNamara, D. S. (2015). ReaderBench: An integrated tool supporting both individual and collaborative learning. In Proceedings of the fifth international conference on learning analytics and knowledge (pp. 436-437). New York, NY: ACM. doi:10.1145/2723576.2723647

Downes, S. (2010). Learning networks and connective knowledge. In Collective intelligence and E-Learning 2.0: Implications of web-based communities and networking (pp. 1-26). IGI Global. Retrieved from

Dringus, L. P. (2012). Learning analytics considered harmful. Journal of Asynchronous Learning Networks, 16(3), 87-100. Retrieved from

Duval, E. (2011). Attention please!: Learning analytics for visualization and recommendation. In Proceedings of the first International Conference on Learning Analytics and Knowledge (pp. 9-17). New York, NY: ACM. doi:10.1145/2090116.2090118

Gašević, D., Dawson, S., Rogers, T., & Gasevic, D. (2016). Learning analytics should not promote one size fits all: The effects of instructional conditions in predicting academic success. The Internet and Higher Education, 28, 68-84. doi:10.1016/j.iheduc.2015.10. 002

Gašević, D., Zouaq, A., & Janzen, R. (2013). “Choose your classmates, your GPA is at stake!” The association of cross-class social ties and academic performance. American Behavioral Scientist, 57(10), 1460-1479. doi:10.1177/0002764213479362

Goodyear, P., & Carvalho, L. (2013). The analysis of complex learning environments. In H. Beetham & R. Sharpe (Eds.), Rethinking pedagogy for a digital age: Designing for 21st century learning, 49-63. Abingdon, UK: Routledge.

Greller, W., & Drachsler, H. (2012). Translating learning into numbers: A generic framework for learning analytics. Educational Technology & Society, 15(42), 42-57. Retrieved from

Gruzd, A. (2009). Studying collaborative learning using name networks. Journal of Education for Library & Information Science, 50(4), 237-247. Retrieved from

Gruzd, A. (2011). Exploring virtual communities with the internet community text analyzer (ICTA). In B. K. Daniel (Ed.), Handbook of research on methods and techniques for studying virtual communities: Paradigms and phenomena. Hershey, PA: IGI Global.

Gruzd, A., Paulin, D., & Haythornthwaite, C. (2016). Analyzing social media and learning through content and social network analysis: A faceted methodological approach. Journal of Learning Analytics, 3(3), 46-71. doi:10.18608/jla.2016.33.4

Hansen, D., Shneiderman, B., & Smith, M. A. (2010). Analyzing social media networks with NodeXL: Insights from a connected world. Burlington, MA: Morgan Kaufmann.

Haythornthwaite, C. (2002). Strong, weak, and latent ties and the impact of new media. Information Society, 18(5), 385-401. doi:10.1080/01972240290108195

Haythornthwaite, C. (2006). Facilitating collaboration in online learning. Journal of Asynchronous Learning Networks, 10(1), 7-24. Retrieved from

Haythornthwaite, C. (2008). Learning relations and networks in web-based communities. International Journal of Web-Based Communities, 4(2), 140-158. Retrieved from

Haythornthwaite, C., & Laat, M. D. (2010). Social networks and learning networks: Using social network perspectives to understand social learning. In Proceedings of the seventh international conference on networked learning, pp. 183-190. Retrieved from

Hernández-García, Á., González-González, I., Jiménez-Zarco, A. I., & Chaparro-Peláez, J. (2015). Applying social learning analytics to message boards in online distance learning: A case study. Computers in Human Behavior, 47, 68-80. doi:10.1016/j.chb.2014.10.038

IBM & Campus Technology (2012). Building a smarter campus: How analytics is changing the academic landscape. Retrieved from Building_a_Smarter_Campus.pdf

Knight, S., & Littleton, K. (2016). Dialogue as data in learning analytics for productive educational dialogue. Journal of Learning Analytics, 2(3), 111-143. Retrieved from

Lockyer, L., Heathcote, E., & Dawson, S. (2013). Informing pedagogical action: Aligning learning analytics with learning design. American Behavioral Scientist, 57(10), 1439-1459. doi:10.1177/0002764213479367

Marreiros, G., Santos, R., & Ramos, C. (2010). GLSS – Group Learning in Shared Spaces considering aspects like emotion and personality. In J. C. Augusto, J. M. Corchado, P. Novais, & C. Analide (Eds.), Ambient intelligence and future trends-international symposium on ambient intelligence (ISAmI 2010), vol. 72 (pp. 37-44). New York NY: Springer.

Pardo, A., Ellis, R. A., & Calvo, R. A. (2015). Combining observational and experiential data to inform the redesign of learning activities. In Proceedings of the fifth international conference on learning analytics and knowledge (pp. 305-309). New York, NY: ACM. doi:10.1145/2723576.2723625

Paulin, D., Gilbert, S., Haythornthwaite, C., Gruzd, A., & Absar, R. (2015). Beyond the backchannel: Leveraging Twitter to enact learning processes. In Proceedings of the 2015 iConference. Urbana, IL. Retrieved from

Picciano, A. G. (2012). The evolution of big data and learning analytics in American higher education. Journal of Asynchronous Learning Networks, 16(3), 9-20. Retrieved from

Romero, C., López, M.-I., Luna, J.-M., & Ventura, S. (2013). Predicting students’ final performance from participation in on-line discussion forums. Computers & Education, 68, 458–472. doi:10.1016/j.compedu.2013.06.009

Serrat O. (2017) Building a Learning Organization. In: Knowledge Solutions. Springer, Singapore. Retrieved from

Siemens, G. (2005). Connectivism: A learning theory for the digital age. International Journal of Instructional Technology and Distance Learning, 2(1), 3-10. doi:10.3109/0142159X.2016.1173661

Thormann, J., Gable, S., Fidalgo, P. S., & Blakeslee, G. (2013). Interaction, critical thinking, and social network analysis (SNA) in online courses. International Review of Research in Open and Distributed Learning, 14(3). Retrieved from

Tinto, V. (2000). Taking student retention seriously: rethinking the first year of college. NACADA Journal, 19(2), 5-10. doi:10.12930/0271-9517-19.2.5

Van Barneveld, A., Arnold, K. E., & Campbell, J. P. (2012). Analytics in higher education: Establishing a common language. EDUCAUSE Learning Initiative, 1(1), 1-11. Retrieved from

Vassileva, J., & Sun, L. (2007). Using community visualization to stimulate participation in online communities. E-Service Journal, 6(1), 3-39. doi:10.19173/irrodl.v14i3.1306

Verbert, K., Duval, E., Klerkx, J., Govaerts, S., & Santos, J. L. (2013). Learning analytics dashboard applications. American Behavioral Scientist, 57(10), 1500-1509. doi:10.1177/0002764213479363

Wise, A. F., Zhao, Y., & Hausknecht, S. N. (2013, April). Learning analytics for online discussions: A pedagogical model for intervention with embedded and extracted analytics. In Proceedings of the third international conference on learning analytics and knowledge,48-56. New York, NY: ACM. doi:10.1177/0002764213479363

Xing, W., Wadholm, R., Petakovic, E., & Goggins, S. (2015). Group learning assessment: Developing a theory-informed analytics. Journal of Educational Technology & Society, 18(2), 110–128. Retrieved from

Zhang, Y., Oussena, S., Clark, T., & Hyensook, K. (2010). Using data mining to improve student retention in HE: a case study. In Proceedings of 12th International Conference on Enterprise Information Systems, Portugal. Retrieved from


Copyright (c) 2018 Scott Comber, Martine Durier-Copp, Anatolity Gruzd

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.